mindcraft/analyze_construction_tasks.py

173 lines
8.2 KiB
Python
Raw Normal View History

import os
import json
from collections import defaultdict
from prettytable import PrettyTable
import re
def extract_success_scores(folders, model_names):
assert len(folders) == len(model_names), "Folders and model names lists must have the same length."
all_task_scores = defaultdict(dict) # Stores task-wise scores per model
zero_score_tasks = defaultdict(list) # Stores tasks with 0 score per model
null_score_tasks = defaultdict(list) # Stores tasks with null score per model
material_groups = defaultdict(lambda: defaultdict(list))
room_groups = defaultdict(lambda: defaultdict(list))
material_room_groups = defaultdict(lambda: defaultdict(list))
overall_scores = defaultdict(list) # New dict to store all scores for each model
pattern = re.compile(r"materials_(\d+)_rooms_(\d+)")
for root_dir, model_name in zip(folders, model_names):
for task_folder in os.listdir(root_dir):
task_path = os.path.join(root_dir, task_folder)
if os.path.isdir(task_path):
logs_found = False
score_found = False
for file_name in os.listdir(task_path):
if file_name.endswith(".json"):
logs_found = True
file_path = os.path.join(task_path, file_name)
try:
with open(file_path, 'r') as file:
data = json.load(file)
for turn in reversed(data.get("turns", [])):
if turn["role"] == "system" and "Task ended with score" in turn["content"]:
score = float(turn["content"].split(":")[-1].strip())
all_task_scores[task_folder][model_name] = score
overall_scores[model_name].append(score) # Add to overall scores
score_found = True
if score == 0:
zero_score_tasks[model_name].append(task_folder)
break
if score_found:
break
except Exception as e:
print(f"Error reading {file_path}: {e}")
if logs_found and not score_found:
# Score not found but logs exist - mark as null
all_task_scores[task_folder][model_name] = None
null_score_tasks[model_name].append(task_folder)
if not logs_found:
print(f"No log files found in {task_folder}")
# Calculate model completion rates (ignore null scores)
model_completion_rates = {}
for model_name in model_names:
valid_tasks = [task for task in all_task_scores.keys() if model_name in all_task_scores[task] and all_task_scores[task][model_name] is not None]
total_tasks = len(valid_tasks)
completed_tasks = len([task for task in valid_tasks if all_task_scores[task][model_name] > 0])
model_completion_rates[model_name] = (completed_tasks / total_tasks) if total_tasks > 0 else 0
# Process task scores into groups (ignore null and 0 scores)
for task, model_scores in all_task_scores.items():
match = pattern.search(task)
if match:
material = int(match.group(1))
room = int(match.group(2))
for model, score in model_scores.items():
if score is not None and score > 0: # Ignore null and 0 scores
material_groups[material][model].append(score)
room_groups[room][model].append(score)
material_room_groups[(material, room)][model].append(score)
def calculate_average(group):
return {key: {model: sum(scores) / len(scores) for model, scores in models.items() if scores}
for key, models in group.items() if models}
avg_material_scores = calculate_average(material_groups)
avg_room_scores = calculate_average(room_groups)
avg_material_room_scores = calculate_average(material_room_groups)
def display_table(title, data, tuple_keys=False):
table = PrettyTable(["Category"] + model_names)
for key, model_scores in sorted(data.items()):
key_display = key if not tuple_keys else f"({key[0]}, {key[1]})"
row = [key_display] + [round(model_scores.get(model, 0), 2) for model in model_names]
table.add_row(row)
print(f"\n{title}")
print(table)
def display_task_scores():
table = PrettyTable(["Task"] + model_names)
for task in sorted(all_task_scores.keys()):
row = [task]
for model in model_names:
score = all_task_scores[task].get(model)
if score is None:
row.append("null")
else:
row.append(round(score, 2))
table.add_row(row)
print("\nTask-wise Success Scores")
print(table)
def display_zero_and_null_score_tasks():
for model in model_names:
if zero_score_tasks[model]:
table = PrettyTable([f"{model} - Tasks with 0 Score"])
for task in zero_score_tasks[model]:
table.add_row([task])
print(f"\n{model} - Tasks with 0 Success Score")
print(table)
if null_score_tasks[model]:
table = PrettyTable([f"{model} - Tasks with Null Score"])
for task in null_score_tasks[model]:
table.add_row([task])
print(f"\n{model} - Tasks with Null Success Score")
print(table)
def display_overall_averages():
table = PrettyTable(["Metric"] + model_names)
# Overall average score (including zeros, excluding nulls)
row_with_zeros = ["Average Score (All Tasks)"]
for model in model_names:
valid_scores = [s for s in overall_scores[model] if s is not None]
avg = sum(valid_scores) / len(valid_scores) if valid_scores else 0
row_with_zeros.append(round(avg, 2))
table.add_row(row_with_zeros)
# Overall average score (excluding zeros and nulls)
row_without_zeros = ["Average Score (Completed Tasks)"]
for model in model_names:
completed_scores = [s for s in overall_scores[model] if s is not None and s > 0]
avg = sum(completed_scores) / len(completed_scores) if completed_scores else 0
row_without_zeros.append(round(avg, 2))
table.add_row(row_without_zeros)
# Task completion rate
completion_row = ["Task Completion Rate (%)"]
for model in model_names:
completion_row.append(round(model_completion_rates[model] * 100, 2))
table.add_row(completion_row)
# Total number of tasks (excluding nulls)
task_count_row = ["Total Tasks"]
for model in model_names:
valid_tasks = [task for task in all_task_scores.keys() if model in all_task_scores[task] and all_task_scores[task][model] is not None]
task_count_row.append(len(valid_tasks))
table.add_row(task_count_row)
print("\nOverall Performance Metrics")
print(table)
display_overall_averages() # Display overall averages first
display_task_scores()
display_zero_and_null_score_tasks()
display_table("Average Success Score by Material", avg_material_scores)
display_table("Average Success Score by Room", avg_room_scores)
display_table("Average Success Score by (Material, Room) Tuples", avg_material_room_scores, tuple_keys=True)
# Example usage
folders = ["experiments/gpt-4o_construction_tasks", "experiments/exp_03-23_12-31"]
model_names = ["GPT-4o","Claude 3.5 sonnet"]
extract_success_scores(folders, model_names)