mindcraft/analyze_cooking_tasks.py

424 lines
15 KiB
Python
Raw Normal View History

import os
import json
import re
from collections import defaultdict
from prettytable import PrettyTable
def extract_cooking_items(exp_dir):
"""Extract cooking items from experiment directory name."""
# Remove prefix and blocked access part
clean_name = re.sub(r'^multiagent_cooking_', '', exp_dir)
clean_name = re.sub(r'_blocked_access_[0-9_]+$', '', clean_name)
# Extract individual items
items = []
for item_match in re.finditer(r'([0-9]+)_([a-zA-Z_]+)', clean_name):
count = int(item_match.group(1))
item = item_match.group(2)
# Remove trailing underscores to fix the item name issue
item = item.rstrip('_')
items.append(item)
return items
def analyze_experiments(root_dir, model_name):
# Store results by number of blocked agents
blocked_access_results = defaultdict(lambda: {
"success": 0,
"total": 0
})
# Store results by cooking item
cooking_item_results = defaultdict(lambda: {
"success": 0,
"total": 0
})
# Keep track of all unique cooking items
all_cooking_items = set()
# Keep track of ignored tasks
ignored_tasks = []
# Get a list of all experiment directories
experiment_dirs = [d for d in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, d))
and d.startswith("multiagent_cooking_")]
for exp_dir in experiment_dirs:
# Extract cooking items
cooking_items = extract_cooking_items(exp_dir)
# Add to unique items set
all_cooking_items.update(cooking_items)
# Extract blocked access information from directory name
blocked_access_match = re.search(r'blocked_access_([0-9_]+)$', exp_dir)
if blocked_access_match:
blocked_access_str = blocked_access_match.group(1)
# Count how many agents have blocked access
num_blocked_agents = len(blocked_access_str.split('_'))
blocked_key = f"{num_blocked_agents} agent(s)"
else:
# No agents blocked
blocked_key = "0 agent(s)"
# Check if the task was successful
is_successful = False
score_found = False
full_exp_path = os.path.join(root_dir, exp_dir)
# Get all JSON files in the experiment directory
agent_files = [f for f in os.listdir(full_exp_path) if f.endswith(".json")]
# Check each agent file for success information
for agent_file in agent_files:
agent_file_path = os.path.join(full_exp_path, agent_file)
try:
with open(agent_file_path, 'r') as f:
agent_data = json.load(f)
# Check for score information in the turns data
if "turns" in agent_data:
for turn in agent_data["turns"]:
if turn.get("role") == "system" and "content" in turn:
if isinstance(turn["content"], str) and "Task ended with score : " in turn["content"]:
score_found = True
if "Task ended with score : 1" in turn["content"]:
is_successful = True
break
# If we found success, no need to check other files
if is_successful:
break
except (json.JSONDecodeError, IOError) as e:
print(f"Error reading {agent_file_path}: {e}")
# Continue to check other agent files instead of failing
continue
# If no score information was found in any agent file, ignore this task
if not score_found:
ignored_tasks.append(exp_dir)
continue
# Update cooking item results
for item in cooking_items:
cooking_item_results[item]["total"] += 1
if is_successful:
cooking_item_results[item]["success"] += 1
# Update the blocked access counters
blocked_access_results[blocked_key]["total"] += 1
if is_successful:
blocked_access_results[blocked_key]["success"] += 1
# Print information about ignored tasks
if ignored_tasks:
print(f"\n{model_name}: Ignored {len(ignored_tasks)} tasks with no score information:")
for task in ignored_tasks:
print(f" - {task}")
return blocked_access_results, cooking_item_results, all_cooking_items, ignored_tasks
def print_model_comparison_blocked(models_results):
print("\nModel Comparison by Number of Agents with Blocked Access:")
print("=" * 100)
# Get all possible blocked access keys
all_blocked_keys = set()
for model_results in models_results.values():
all_blocked_keys.update(model_results.keys())
# Sort the keys
sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0]))
# Create the table
table = PrettyTable()
table.field_names = ["Blocked Agents"] + [
f"{model_name} (Success Rate | Success/Total)" for model_name in models_results.keys()
]
# Calculate and add rows for each blocked key
model_totals = {model: {"success": 0, "total": 0} for model in models_results.keys()}
for key in sorted_keys:
row = [key]
for model_name, model_results in models_results.items():
if key in model_results:
success = model_results[key]["success"]
total = model_results[key]["total"]
model_totals[model_name]["success"] += success
model_totals[model_name]["total"] += total
success_rate = (success / total * 100) if total > 0 else 0
row.append(f"{success_rate:.2f}% | {success}/{total}")
else:
row.append("N/A")
table.add_row(row)
# Print the table
print(table)
# Print the overall results
overall_row = ["Overall"]
for model_name, totals in model_totals.items():
success = totals["success"]
total = totals["total"]
success_rate = (success / total * 100) if total > 0 else 0
overall_row.append(f"{success_rate:.2f}% | {success}/{total}")
table.add_row(overall_row)
print(table)
def print_model_comparison_items(models_item_results, all_cooking_items):
print("\nModel Comparison by Cooking Item:")
print("=" * 100)
# Create the table
table = PrettyTable()
table.field_names = ["Cooking Item"] + [
f"{model_name} (Success Rate | Success/Total)" for model_name in models_item_results.keys()
]
# Calculate and add rows for each cooking item
model_totals = {model: {"success": 0, "total": 0} for model in models_item_results.keys()}
for item in sorted(all_cooking_items):
row = [item]
for model_name, model_results in models_item_results.items():
if item in model_results:
success = model_results[item]["success"]
total = model_results[item]["total"]
model_totals[model_name]["success"] += success
model_totals[model_name]["total"] += total
success_rate = (success / total * 100) if total > 0 else 0
row.append(f"{success_rate:.2f}% | {success}/{total}")
else:
row.append("N/A")
table.add_row(row)
# Print the table
print(table)
# Print the overall results
overall_row = ["Overall"]
for model_name, totals in model_totals.items():
success = totals["success"]
total = totals["total"]
success_rate = (success / total * 100) if total > 0 else 0
overall_row.append(f"{success_rate:.2f}% | {success}/{total}")
table.add_row(overall_row)
print(table)
def print_model_comparison_items_by_blocked(models_data, all_cooking_items):
print("\nDetailed Model Comparison by Cooking Item and Blocked Agent Count:")
print("=" * 120)
# For each cooking item, create a comparison table by blocked agent count
for item in sorted(all_cooking_items):
print(f"\nResults for cooking item: {item}")
print("-" * 100)
# Create the table
table = PrettyTable()
table.field_names = ["Blocked Agents"] + [
f"{model_name} Success Rate" for model_name in models_data.keys()
] + [
f"{model_name} Success/Total" for model_name in models_data.keys()
]
# Get all possible blocked agent counts
all_blocked_keys = set()
for model_name, model_data in models_data.items():
_, _, item_blocked_data = model_data
for blocked_key in item_blocked_data.get(item, {}).keys():
all_blocked_keys.add(blocked_key)
# Sort the keys
sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0]))
# Add rows for each blocked key
for blocked_key in sorted_keys:
row = [blocked_key]
for model_name, model_data in models_data.items():
_, _, item_blocked_data = model_data
if item in item_blocked_data and blocked_key in item_blocked_data[item]:
success = item_blocked_data[item][blocked_key]["success"]
total = item_blocked_data[item][blocked_key]["total"]
if total > 0:
success_rate = (success / total * 100)
row.append(f"{success_rate:.2f}%")
row.append(f"{success}/{total}")
else:
row.append("N/A")
row.append("0/0")
else:
row.append("N/A")
row.append("N/A")
table.add_row(row)
# Print the table
print(table)
# Print item summary for each model
overall_row = ["Overall"]
for model_name, model_data in models_data.items():
_, item_results, _ = model_data
if item in item_results:
success = item_results[item]["success"]
total = item_results[item]["total"]
if total > 0:
success_rate = (success / total * 100)
overall_row.append(f"{success_rate:.2f}%")
overall_row.append(f"{success}/{total}")
else:
overall_row.append("N/A")
overall_row.append("0/0")
else:
overall_row.append("N/A")
overall_row.append("N/A")
table.add_row(overall_row)
print(table)
def generate_item_blocked_data(experiments_root):
# Organize data by item and blocked agent count
item_blocked_data = defaultdict(lambda: defaultdict(lambda: {"success": 0, "total": 0}))
# Keep track of ignored tasks
ignored_tasks = []
# Populate the data structure
for exp_dir in os.listdir(experiments_root):
if not os.path.isdir(os.path.join(experiments_root, exp_dir)) or not exp_dir.startswith("multiagent_cooking_"):
continue
# Extract cooking items
cooking_items = extract_cooking_items(exp_dir)
# Extract blocked access information
blocked_access_match = re.search(r'blocked_access_([0-9_]+)$', exp_dir)
if blocked_access_match:
blocked_access_str = blocked_access_match.group(1)
num_blocked_agents = len(blocked_access_str.split('_'))
blocked_key = f"{num_blocked_agents} agent(s)"
else:
blocked_key = "0 agent(s)"
# Check if the task was successful and if score information exists
is_successful = False
score_found = False
full_exp_path = os.path.join(experiments_root, exp_dir)
agent_files = [f for f in os.listdir(full_exp_path) if f.endswith(".json")]
for agent_file in agent_files:
try:
with open(os.path.join(full_exp_path, agent_file), 'r') as f:
agent_data = json.load(f)
if "turns" in agent_data:
for turn in agent_data["turns"]:
if turn.get("role") == "system" and "content" in turn:
if isinstance(turn["content"], str) and "Task ended with score : " in turn["content"]:
score_found = True
if "Task ended with score : 1" in turn["content"]:
is_successful = True
break
if is_successful:
break
except:
continue
# If no score information was found, skip this task
if not score_found:
ignored_tasks.append(exp_dir)
continue
# Update the item-blocked data
for item in cooking_items:
item_blocked_data[item][blocked_key]["total"] += 1
if is_successful:
item_blocked_data[item][blocked_key]["success"] += 1
return item_blocked_data, ignored_tasks
def main():
# Define lists for model directories and corresponding model names
model_dirs = [
"experiments/gpt-4o_2agent_NEW_cooking_tasks",
# "experiments/claude-3-5-sonnet_2agent_NEW_cooking_tasks",
# "experiments/claude-3-5-sonnet_3agent_NEW_cooking_tasks",
"experiments/gpt-4o_3agent_NEW_cooking_tasks",
# "experiments/1_claude-3-5-sonnet_4agents_NEW_cooking_tasks",
"experiments/gpt-4o_4agents_NEW_cooking_tasks",
"experiments/gpt-4o_5agents_NEW_cooking_tasks",
# "experiments/"
]
model_names = [
"GPT-4o-2agent",
# "Claude-3.5-2agent",
"GPT-4o-3agent",
# "Claude-3.5-3agent",
# "Claude-3.5-4agent",
"GPT-4o-4agent",
"GPT-4o-5agent",
# "Another-Model"
]
# Ensure both lists are of the same size
if len(model_dirs) != len(model_names):
print("Error: The number of model directories and model names must be the same.")
return
# Analyze each model directory
models_blocked_results = {}
models_item_results = {}
all_cooking_items = set()
total_ignored_tasks = 0
for model_dir, model_name in zip(model_dirs, model_names):
print(f"Analyzing {model_name} experiments in: {model_dir}")
blocked_results, item_results, unique_items, ignored_tasks = analyze_experiments(model_dir, model_name)
models_blocked_results[model_name] = blocked_results
models_item_results[model_name] = item_results
all_cooking_items.update(unique_items)
total_ignored_tasks += len(ignored_tasks)
if ignored_tasks:
print(f" - {model_name}: Ignored {len(ignored_tasks)} tasks with no score information.")
# Print summary of ignored tasks
if total_ignored_tasks > 0:
print(f"\nTotal ignored tasks (missing score information): {total_ignored_tasks}")
# Print the comparison tables
print_model_comparison_blocked(models_blocked_results)
print_model_comparison_items(models_item_results, all_cooking_items)
# Print overall statistics
print("\nUnique Cooking Items Found:")
print("=" * 60)
print(", ".join(sorted(all_cooking_items)))
print(f"Total unique items: {len(all_cooking_items)}")
if __name__ == "__main__":
main()