mindcraft/src/models/gpt.js

69 lines
2.3 KiB
JavaScript
Raw Normal View History

2024-02-18 22:56:38 -06:00
import OpenAIApi from 'openai';
import configJson from "../../keys.json" assert { type: "json" };
2024-04-24 11:28:04 -07:00
2024-02-18 22:56:38 -06:00
export class GPT {
2024-04-24 11:28:04 -07:00
constructor(model_name, url) {
this.model_name = model_name;
2024-04-24 11:28:04 -07:00
let config = {};
if (url)
config.baseURL = url;
if (configJson.OPENAI_ORG_ID)
config.apiKey = configJson.OPENAI_ORG_ID;
else if (process.env.OPENAI_ORG_ID)
config.apiKey = process.env.OPENAI_ORG_ID;
if (configJson.OPENAI_API_KEY)
config.apiKey = configJson.OPENAI_API_KEY;
else if (process.env.OPENAI_API_KEY)
config.apiKey = process.env.OPENAI_API_KEY;
2024-04-24 11:28:04 -07:00
else
throw new Error('OpenAI API key missing! Make sure you set your OPENAI_API_KEY in your keys.json.');
2024-02-18 22:56:38 -06:00
2024-04-24 11:28:04 -07:00
this.openai = new OpenAIApi(config);
2024-02-18 22:56:38 -06:00
}
async sendRequest(turns, systemMessage, stop_seq='***') {
let messages = [{'role': 'system', 'content': systemMessage}].concat(turns);
let res = null;
try {
console.log('Awaiting openai api response...')
console.log('Messages:', messages);
2024-02-18 22:56:38 -06:00
let completion = await this.openai.chat.completions.create({
2024-04-24 11:28:04 -07:00
model: this.model_name || "gpt-3.5-turbo",
2024-02-18 22:56:38 -06:00
messages: messages,
stop: stop_seq,
});
if (completion.choices[0].finish_reason == 'length')
throw new Error('Context length exceeded');
console.log('Received.')
res = completion.choices[0].message.content;
}
catch (err) {
if ((err.message == 'Context length exceeded' || err.code == 'context_length_exceeded') && turns.length > 1) {
console.log('Context length exceeded, trying again with shorter context.');
return await sendRequest(turns.slice(1), systemMessage, stop_seq);
} else {
console.log(err);
res = 'My brain disconnected, try again.';
}
}
return res;
}
async embed(text) {
const embedding = await this.openai.embeddings.create({
2024-04-24 11:28:04 -07:00
model: this.model_name || "text-embedding-ada-002",
2024-02-18 22:56:38 -06:00
input: text,
encoding_format: "float",
});
return embedding.data[0].embedding;
}
}