import OpenAIApi from 'openai'; import { getKey } from '../utils/keys.js'; import { strictFormat } from '../utils/text.js'; export class Qwen { constructor(model_name, url) { this.model_name = model_name; this.url = url; const config = { baseURL: this.url, apiKey: getKey('QWEN_API_KEY'), }; this.openai = new OpenAIApi(config); this.apiKey = config.apiKey; } async sendRequest(turns, systemMessage, stop_seq = '***') { const messages = [{ role: 'system', content: systemMessage }, ...turns]; const pack = { model: this.model_name || 'qwen-plus', messages: this.model_name.includes('o1') ? strictFormat(messages) : messages, stop: this.model_name.includes('o1') ? undefined : stop_seq, }; try { console.log('Awaiting Qwen API response...'); const completion = await this.openai.chat.completions.create(pack); const choice = completion.choices[0]; if (choice.finish_reason === 'length') { console.log('Context length exceeded'); return await this.sendRequest(turns.slice(1), systemMessage, stop_seq); } console.log('Received.'); return choice.message.content; } catch (err) { console.error('Error occurred:', err); return 'My brain disconnected, try again.'; } } async embed(text) { if (!text || typeof text !== 'string') { console.error('Invalid input for embedding: text must be a non-empty string.'); return 'Invalid input for embedding: text must be a non-empty string.'; } const headers = { 'Authorization': `Bearer ${this.apiKey}`, 'Content-Type': 'application/json' }; const data = { model: 'text-embedding-v2', input: { texts: [text] }, parameters: { text_type: 'query' } }; try { const response = await fetch(this.url, { method: 'POST', headers: headers, body: JSON.stringify(data) }); const responseData = await response.json(); if (!responseData?.output?.embeddings) { console.error('Invalid response from embedding API'); return 'An error occurred while processing your embedding request. Please try again.'; } return responseData.output.embeddings[0].embedding; } catch (err) { console.error('Error occurred:', err); return 'An error occurred while processing your embedding request. Please try again.'; } } }