import os import json import re from collections import defaultdict def extract_cooking_items(exp_dir): """Extract cooking items from experiment directory name.""" # Remove prefix and blocked access part clean_name = re.sub(r'^multiagent_cooking_', '', exp_dir) clean_name = re.sub(r'_blocked_access_[0-9_]+$', '', clean_name) # Extract individual items items = [] for item_match in re.finditer(r'([0-9]+)_([a-zA-Z_]+)', clean_name): count = int(item_match.group(1)) item = item_match.group(2) # Remove trailing underscores to fix the item name issue item = item.rstrip('_') items.append(item) return items def analyze_experiments(root_dir, model_name): # Store results by number of blocked agents blocked_access_results = defaultdict(lambda: { "success": 0, "total": 0 }) # Store results by cooking item cooking_item_results = defaultdict(lambda: { "success": 0, "total": 0 }) # Keep track of all unique cooking items all_cooking_items = set() # Get a list of all experiment directories experiment_dirs = [d for d in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, d)) and d.startswith("multiagent_cooking_")] for exp_dir in experiment_dirs: # Extract cooking items cooking_items = extract_cooking_items(exp_dir) # Add to unique items set all_cooking_items.update(cooking_items) # Extract blocked access information from directory name blocked_access_match = re.search(r'blocked_access_([0-9_]+)$', exp_dir) if blocked_access_match: blocked_access_str = blocked_access_match.group(1) # Count how many agents have blocked access num_blocked_agents = len(blocked_access_str.split('_')) blocked_key = f"{num_blocked_agents} agent(s)" else: # No agents blocked blocked_key = "0 agent(s)" # Check if the task was successful is_successful = False full_exp_path = os.path.join(root_dir, exp_dir) # Get all JSON files in the experiment directory agent_files = [f for f in os.listdir(full_exp_path) if f.endswith(".json")] # Check each agent file for success information for agent_file in agent_files: agent_file_path = os.path.join(full_exp_path, agent_file) try: with open(agent_file_path, 'r') as f: agent_data = json.load(f) # Check for success in the turns data if "turns" in agent_data: for turn in agent_data["turns"]: if turn.get("role") == "system" and "content" in turn: if isinstance(turn["content"], str) and "Task ended with score : 1" in turn["content"]: is_successful = True break # If we found success, no need to check other files if is_successful: break except (json.JSONDecodeError, IOError) as e: print(f"Error reading {agent_file_path}: {e}") # Continue to check other agent files instead of failing continue # Update cooking item results for item in cooking_items: cooking_item_results[item]["total"] += 1 if is_successful: cooking_item_results[item]["success"] += 1 # Update the blocked access counters blocked_access_results[blocked_key]["total"] += 1 if is_successful: blocked_access_results[blocked_key]["success"] += 1 return blocked_access_results, cooking_item_results, all_cooking_items def print_model_comparison_blocked(models_results): print("\nModel Comparison by Number of Agents with Blocked Access:") print("=" * 100) # Get all possible blocked access keys all_blocked_keys = set() for model_results in models_results.values(): all_blocked_keys.update(model_results.keys()) # Sort the keys sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0])) # Create the header header = f"{'Blocked Agents':<15} | " for model_name in models_results.keys(): header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | " print(header) print("-" * 100) # Calculate and print the results for each blocked key model_totals = {model: {"success": 0, "total": 0} for model in models_results.keys()} for key in sorted_keys: row = f"{key:<15} | " for model_name, model_results in models_results.items(): if key in model_results: success = model_results[key]["success"] total = model_results[key]["total"] model_totals[model_name]["success"] += success model_totals[model_name]["total"] += total success_rate = (success / total * 100) if total > 0 else 0 row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | " else: row += f"{'N/A':<19} | {'N/A':<19} | " print(row) # Print the overall results print("-" * 100) row = f"{'Overall':<15} | " for model_name, totals in model_totals.items(): success = totals["success"] total = totals["total"] success_rate = (success / total * 100) if total > 0 else 0 row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | " print(row) def print_model_comparison_items(models_item_results, all_cooking_items): print("\nModel Comparison by Cooking Item:") print("=" * 100) # Create the header header = f"{'Cooking Item':<20} | " for model_name in models_item_results.keys(): header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | " print(header) print("-" * 100) # Calculate and print the results for each cooking item model_totals = {model: {"success": 0, "total": 0} for model in models_item_results.keys()} for item in sorted(all_cooking_items): row = f"{item:<20} | " for model_name, model_results in models_item_results.items(): if item in model_results: success = model_results[item]["success"] total = model_results[item]["total"] model_totals[model_name]["success"] += success model_totals[model_name]["total"] += total success_rate = (success / total * 100) if total > 0 else 0 row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | " else: row += f"{'N/A':<19} | {'N/A':<19} | " print(row) # Print the overall results print("-" * 100) row = f"{'Overall':<20} | " for model_name, totals in model_totals.items(): success = totals["success"] total = totals["total"] success_rate = (success / total * 100) if total > 0 else 0 row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | " print(row) def print_model_comparison_items_by_blocked(models_data, all_cooking_items): print("\nDetailed Model Comparison by Cooking Item and Blocked Agent Count:") print("=" * 120) # For each cooking item, create a comparison table by blocked agent count for item in sorted(all_cooking_items): print(f"\nResults for cooking item: {item}") print("-" * 100) # Create the header header = f"{'Blocked Agents':<15} | " for model_name in models_data.keys(): header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | " print(header) print("-" * 100) # Get all possible blocked agent counts all_blocked_keys = set() for model_name, model_data in models_data.items(): _, _, item_blocked_data = model_data for blocked_key in item_blocked_data.get(item, {}).keys(): all_blocked_keys.add(blocked_key) # Sort the keys sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0])) # Print each row for blocked_key in sorted_keys: row = f"{blocked_key:<15} | " for model_name, model_data in models_data.items(): _, _, item_blocked_data = model_data if item in item_blocked_data and blocked_key in item_blocked_data[item]: success = item_blocked_data[item][blocked_key]["success"] total = item_blocked_data[item][blocked_key]["total"] if total > 0: success_rate = (success / total * 100) row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | " else: row += f"{'N/A':<19} | {'0/0':<19} | " else: row += f"{'N/A':<19} | {'N/A':<19} | " print(row) # Print item summary for each model print("-" * 100) row = f"{'Overall':<15} | " for model_name, model_data in models_data.items(): _, item_results, _ = model_data if item in item_results: success = item_results[item]["success"] total = item_results[item]["total"] if total > 0: success_rate = (success / total * 100) row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | " else: row += f"{'N/A':<19} | {'0/0':<19} | " else: row += f"{'N/A':<19} | {'N/A':<19} | " print(row) def generate_item_blocked_data(experiments_root): # Organize data by item and blocked agent count item_blocked_data = defaultdict(lambda: defaultdict(lambda: {"success": 0, "total": 0})) # Populate the data structure for exp_dir in os.listdir(experiments_root): if not os.path.isdir(os.path.join(experiments_root, exp_dir)) or not exp_dir.startswith("multiagent_cooking_"): continue # Extract cooking items cooking_items = extract_cooking_items(exp_dir) # Extract blocked access information blocked_access_match = re.search(r'blocked_access_([0-9_]+)$', exp_dir) if blocked_access_match: blocked_access_str = blocked_access_match.group(1) num_blocked_agents = len(blocked_access_str.split('_')) blocked_key = f"{num_blocked_agents} agent(s)" else: blocked_key = "0 agent(s)" # Check if the task was successful is_successful = False full_exp_path = os.path.join(experiments_root, exp_dir) agent_files = [f for f in os.listdir(full_exp_path) if f.endswith(".json")] for agent_file in agent_files: try: with open(os.path.join(full_exp_path, agent_file), 'r') as f: agent_data = json.load(f) if "turns" in agent_data: for turn in agent_data["turns"]: if turn.get("role") == "system" and "content" in turn: if isinstance(turn["content"], str) and "Task ended with score : 1" in turn["content"]: is_successful = True break if is_successful: break except: continue # Update the item-blocked data for item in cooking_items: item_blocked_data[item][blocked_key]["total"] += 1 if is_successful: item_blocked_data[item][blocked_key]["success"] += 1 return item_blocked_data def main(): base_dir = "experiments" # Get the model directories all_model_dirs = [d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))] gpt_dirs = [d for d in all_model_dirs if d.startswith("gpt-4o_30_cooking_tasks")] claude_dirs = [d for d in all_model_dirs if d.startswith("llama_70b_30_cooking_tasks")] if not gpt_dirs or not claude_dirs: print("Error: Could not find both model directories. Please check your paths.") return # Use the first directory found for each model gpt_dir = os.path.join(base_dir, gpt_dirs[0]) claude_dir = os.path.join(base_dir, claude_dirs[0]) print(f"Analyzing GPT-4o experiments in: {gpt_dir}") print(f"Analyzing Claude-3.5-Sonnet experiments in: {claude_dir}") # Analyze each model directory gpt_blocked_results, gpt_item_results, gpt_unique_items = analyze_experiments(gpt_dir, "GPT-4o") claude_blocked_results, claude_item_results, claude_unique_items = analyze_experiments(claude_dir, "Claude-3.5") # Combine unique cooking items all_cooking_items = gpt_unique_items.union(claude_unique_items) # Generate item-blocked data for each model gpt_item_blocked_data = generate_item_blocked_data(gpt_dir) claude_item_blocked_data = generate_item_blocked_data(claude_dir) # Create model comparison data structures models_blocked_results = { "GPT-4o": gpt_blocked_results, "Claude-3.5": claude_blocked_results } models_item_results = { "GPT-4o": gpt_item_results, "Claude-3.5": claude_item_results } models_data = { "GPT-4o": (gpt_blocked_results, gpt_item_results, gpt_item_blocked_data), "Claude-3.5": (claude_blocked_results, claude_item_results, claude_item_blocked_data) } # Print the comparison tables print_model_comparison_blocked(models_blocked_results) print_model_comparison_items(models_item_results, all_cooking_items) print_model_comparison_items_by_blocked(models_data, all_cooking_items) # Print overall statistics print("\nUnique Cooking Items Found:") print("=" * 60) print(", ".join(sorted(all_cooking_items))) print(f"Total unique items: {len(all_cooking_items)}") if __name__ == "__main__": main()